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glm.binomial.disp Overdispersed binomial logit models

Description

This function estimates overdispersed binomial logit models using the approach discussed by Williams
(1982).

Usage

glm.binomial.disp(object, maxit = 30, verbose = TRUE)

Arguments

object an object of class "glm" providing a fitted binomial logistic regression model;
see glm.

maxit integer giving the maximal number of iterations for the model fitting procedure.

verbose logical, if TRUE information are printed during each step of the algorithm.

Details

Extra-binomial variation in logistic linear models is discussed, among others, in Collett (1991).
Williams (1982) proposed a quasi-likelihood approach for handling overdispersion in logistic re-
gression models.

Suppose we observe the number of successes yi in mi trials, for i = 1, . . . , n, such that

yi | pi ∼ Binomial(mi, pi)

pi ∼ Beta(γ, δ)

Under this model, each of the n binomial observations has a different probability of success pi,
where pi is a random draw from a Beta distribution. Thus,

E(pi) =
γ

γ + δ
= θ

V (pi) = ϕθ(1− θ)

Assuming γ > 1 and δ > 1, the Beta density is zero at the extreme values of zero and one, and thus
0 < ϕ ≤ 1/3. From this, the unconditional mean and variance can be calculated:

E(yi) = miθ

V (yi) = miθ(1− θ)(1 + (mi − 1)ϕ)

so unless mi = 1 or ϕ = 0, the unconditional variance of yi is larger than binomial variance.
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Identical expressions for the mean and variance of yi can be obtained if we assume that the mi

counts on the i-th unit are dependent, with the same correlation ϕ. In this case, −1/(mi − 1) <
ϕ ≤ 1.

The method proposed by Williams uses an iterative algorithm for estimating the dispersion param-
eter ϕ and hence the necessary weights 1/(1 + ϕ(mi − 1)) (for details see Williams, 1982).

Value

The function returns an object of class "glm" with the usual information and the added components:

dispersion the estimated dispersion parameter.

disp.weights the final weights used to fit the model.

Note

Based on a similar procedure available in Arc (Cook and Weisberg, http://www.stat.umn.edu/
arc)

References

Collett, D. (1991), Modelling Binary Data, London: Chapman and Hall.

Williams, D. A. (1982), Extra-binomial variation in logistic linear models, Applied Statistics, 31,
144–148.

See Also

lm, glm, lm.disp, glm.poisson.disp

Examples

data(orobanche)

mod <- glm(cbind(germinated, seeds-germinated) ~ host*variety, data = orobanche,
family = binomial(logit))

summary(mod)

mod.disp <- glm.binomial.disp(mod)
summary(mod.disp)
mod.disp$dispersion

glm.poisson.disp Overdispersed Poisson log-linear models

Description

This function estimates overdispersed Poisson log-linear models using the approach discussed by
Breslow N.E. (1984).

http://www.stat.umn.edu/arc
http://www.stat.umn.edu/arc
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Usage

glm.poisson.disp(object, maxit = 30, verbose = TRUE)

Arguments

object an object of class "glm" providing a fitted Poisson log-linear regression model;
see glm.

maxit integer giving the maximal number of iterations for the model fitting procedure.

verbose logical, if TRUE information are printed during each step of the algorithm.

Details

Breslow (1984) proposed an iterative algorithm for fitting overdispersed Poisson log-linear models.
The method is similar to that proposed by Williams (1982) for handling overdispersion in logistic
regression models (see glm.binomial.disp).

Suppose we observe n independent responses such that

yi | λi ∼ Poisson(λini)

for i = 1, . . . , n. The response variable yi may be an event counts variable observed over a period
of time (or in the space) of length ni, whereas λi is the rate parameter. Then,

E(yi | λi) = µi = λini = exp(log(ni) + log(λi))

where log(ni) is an offset and log(λi) = β′xi expresses the dependence of the Poisson rate param-
eter on a set of, say p, predictors. If the periods of time are all of the same length, we can set ni = 1
for all i so the offset is zero.

The Poisson distribution has E(yi | λi) = V (yi | λi), but it may happen that the actual variance
exceeds the nominal variance under the assumed probability model.

Suppose that θi = λini is a random variable distributed according to

θi ∼ Gamma(µi, 1/ϕ)

where E(θi) = µi and V (θi) = µ2
iϕ. Thus, it can be shown that the unconditional mean and

variance of yi are given by

E(yi) = µi

and
V (yi) = µi + µ2

iϕ = µi(1 + µiϕ)

Hence, for ϕ > 0 we have overdispersion. It is interesting to note that the same mean and variance
arise also if we assume a negative binomial distribution for the response variable.

The method proposed by Breslow uses an iterative algorithm for estimating the dispersion parameter
ϕ and hence the necessary weights 1/(1 + µiϕ̂) (for details see Breslow, 1984).
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Value

The function returns an object of class "glm" with the usual information and the added components:

dispersion the estimated dispersion parameter.

disp.weights the final weights used to fit the model.

Note

Based on a similar procedure available in Arc (Cook and Weisberg, http://www.stat.umn.edu/
arc)

References

Breslow, N.E. (1984), Extra-Poisson variation in log-linear models, Applied Statistics, 33, 38–44.

See Also

lm, glm, lm.disp, glm.binomial.disp

Examples

## Salmonella TA98 data
data(salmonellaTA98)
salmonellaTA98 <- within(salmonellaTA98, logx10 <- log(x+10))
mod <- glm(y ~ logx10 + x, data = salmonellaTA98, family = poisson(log))
summary(mod)

mod.disp <- glm.poisson.disp(mod)
summary(mod.disp)
mod.disp$dispersion

# compute predictions on a grid of x-values...
x0 <- with(salmonellaTA98, seq(min(x), max(x), length=50))
eta0 <- predict(mod, newdata = data.frame(logx10 = log(x0+10), x = x0), se=TRUE)
eta0.disp <- predict(mod.disp, newdata = data.frame(logx10 = log(x0+10), x = x0), se=TRUE)
# ... and plot the mean functions with variability bands
plot(y ~ x, data = salmonellaTA98)
lines(x0, exp(eta0$fit))
lines(x0, exp(eta0$fit+2*eta0$se), lty=2)
lines(x0, exp(eta0$fit-2*eta0$se), lty=2)
lines(x0, exp(eta0.disp$fit), col=3)
lines(x0, exp(eta0.disp$fit+2*eta0.disp$se), lty=2, col=3)
lines(x0, exp(eta0.disp$fit-2*eta0.disp$se), lty=2, col=3)

## Holford's data
data(holford)

mod <- glm(incid ~ offset(log(pop)) + Age + Cohort, data = holford,
family = poisson(log))

summary(mod)

http://www.stat.umn.edu/arc
http://www.stat.umn.edu/arc
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mod.disp <- glm.poisson.disp(mod)
summary(mod.disp)
mod.disp$dispersion

holford Holford’s data on prostatic cancer deaths

Description

Holford’s data on prostatic cancer deaths and mid-period population denominators for non-whites
in the US by age and calendar period. Thirteen birth cohorts from 1855-59 through to 1915-19 are
represented in at least one of seven 5-year age groups (50-54 through to 80-84) and one of the seven
5-year calendar periods (1935-39 through to 1965-69) for which data are provided.

Usage

data(minitab)

Format

This data frame contains the following columns:

incid number ofd prostatic cancer deaths.

pop mid-period population counts.

Age age groups.

Period calendar periods.

Cohort cohorts.

Source

Holford, T.R. (1983) The estimation of age, period and cohort effects for vital rates. Biometrics, 39,
311–324.

References

Breslow, N.E. (1984), Extra-Poisson variation in log-linear models, Applied Statistics, 33, 38–44.
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lm.disp Gaussian dispersion models

Description

This function estimates Gaussian dispersion regression models.

Usage

lm.disp(formula, var.formula, data = list(), maxit = 30,
epsilon = glm.control()$epsilon, subset, na.action = na.omit,
contrasts = NULL, offset = NULL)

Arguments

formula a symbolic description of the mean function of the model to be fit. For the details
of model formula specification see lm and formula.

var.formula a symbolic description of the variance function of the model to be fit. This must
be a one-sided formula; if omitted the same terms used for the mean function
are used. For the details of model formula specification see lm and formula.

data an optional data frame containing the variables in the model. By default the vari-
ables are taken from environment(formula), typically the environment from
which the function is called.

maxit integer giving the maximal number of iterations for the model fitting procedure.

epsilon tolerance value for checking convergence. See glm.control.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

na.action a function which indicates what should happen when the data contain NA’s. By
default is set to na.omit, but other possibilities are available; see na.omit.

contrasts an optional list as described in the contrasts.arg argument of model.matrix.default.

offset this can be used to specify an a priori known component to be included in the
linear predictor during fitting. An offset term can be included in the formula
instead or as well, and if both are specified their sum is used.

Details

Gaussian dispersion models allow to model variance heterogeneity in Gaussian regression analysis
using a log-linear model for the variance.

Suppose a response y is modelled as a function of a set of p predictors x through the linear model

yi = β′xi + ei

where ei ∼ N(0, σ2) under homogeneity.

Variance heterogeneity is modelled as
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V (ei) = σ2 = exp(λ′zi)

where zi may contain some or all the variables in xi and other variables not included in xi; zi is
however assumed to contain a constant term.

The full model can be expressed as

E(y|x) = β′x

V (y|x) = exp(λ′z)

and it is fitted by maximum likelihood following the algorithm described in Aitkin (1987).

Value

lm.dispmod() returns an object of class "dispmod".

The summary method can be used to obtain and print a summary of the results.

An object of class "dispmod" is a list containing the following components:

call the matched call.

mean an object of class "glm" giving the fitted model for the mean function; see glm

var an object of class "glm" giving the fitted model for the variance function; see
glm.

initial.deviance

the value of the deviance at the beginning of the iterative procedure, i.e. assum-
ing constant variance.

deviance the value of the deviance at the end of the iterative procedure.

Note

Based on a similar procedure available in Arc (Cook and Weisberg, http://www.stat.umn.edu/
arc)

References

Aitkin, M. (1987), Modelling variance heterogeneity in normal regression models using GLIM,
Applied Statistics, 36, 332–339.

See Also

lm, glm, glm.binomial.disp, glm.poisson.disp, ncvTest.

http://www.stat.umn.edu/arc
http://www.stat.umn.edu/arc
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Examples

data(minitab)
minitab <- within(minitab, y <- V^(1/3) )
mod <- lm(y ~ H + D, data = minitab)
summary(mod)

mod.disp1 <- lm.disp(y ~ H + D, data = minitab)
summary(mod.disp1)

mod.disp2 <- lm.disp(y ~ H + D, ~ H, data = minitab)
summary(mod.disp2)

# Likelihood ratio test
deviances <- c(mod.disp1$initial.deviance,

mod.disp2$deviance,
mod.disp1$deviance)

lrt <- c(NA, abs(diff(deviances)))
cbind(deviances, lrt, p.value = 1-pchisq(lrt, 1))

# quadratic dispersion model on D (as discussed by Aitkin)
mod.disp4 <- lm.disp(y ~ H + D, ~ D + I(D^2), data = minitab)
summary(mod.disp4)

r <- mod$residuals
phi.est <- mod.disp4$var$fitted.values
plot(minitab$D, log(r^2))
lines(minitab$D, log(phi.est))

minitab Minitab tree data

Description

Data on 31 black cherry trees sampled from the Allegheny Natinoal Forest, Pennsylvania.

Usage

data(minitab)

Format

This data frame contains the following columns:

D diameter 4.5 feet of the ground, inches

H height of the tree, feet

V marketable volume of wood, cubic feet
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Source

Ryan, T.A., Joiner, B.L. and Ryan, B.F. (1976) Minitab Student Handbook. N. Scituate, MA:
Duxbury.

References

Cook, R.D. and Weisberg, S. (1982) Residuals and Influence in Regression, New York: Chapman
and Hall, p. 66.

orobanche Germination of Orobanche

Description

Orobanche, commonly known as broomrape, is a genus of parasitic plants with chlorophyll that
grow on the roots of flowering plants. Batches of seeds of two varieties of the plant were were
brushed onto a plate of diluted extract of bean or cucumber, and the number germinating were
recorded.

Usage

data(orobanche)

Format

This data frame contains the following columns:

germinated Number germinated

seeds Number of seeds

slide Slide number

host Host type

variety Variety name

Source

Crowder, M.J. (1978) Beta-binomial anova for proportions. Applied Statistics, 27, 34–37.

References

Collett, D. (1991) Modelling Binary Data, London: Chapman and Hall, Chapter 6.
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salmonellaTA98 Salmonella reverse mutagenicity assay

Description

Data on Ames Salmonella reverse mutagenicity assay.

Usage

data(salmonellaTA98)

Format

This data frame contains the following columns:

x dose levels of quinoline

y numbers of revertant colonies of TA98 Salmonella observed on each of three replicate plates
testes at each of six dose levels of quinolinediameter 4.5 feet of the ground, inches

Source

Margolin, B.J., Kaplan, N. and Zeiger, E. (1981) Statistical analysis of the Ames Salmonella/microsome
test, Proc. Natl. Acad. Sci. USA, 76, 3779–3783.

References

Breslow, N.E. (1984), Extra-Poisson variation in log-linear models, Applied Statistics, 33, 38–44.
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