Package: dispmod (via r-universe)

August 27, 2024

Version 1.2

Date 2018-03-17

Title Modelling Dispersion in GLM

Description Functions for estimating Gaussian dispersion regression models (Aitkin, 1987 [<doi:10.2307/2347792>](https://doi.org/10.2307/2347792)), overdispersed binomial logit models (Williams, 1987 [<doi:10.2307/2347977>](https://doi.org/10.2307/2347977)), and overdispersed Poisson log-linear models (Breslow, 1984 [<doi:10.2307/2347661>](https://doi.org/10.2307/2347661)), using a quasi-likelihood approach.

Depends R ($>= 3.0$), stats

Suggests car $(>= 2.1)$ License GPL $(>= 2)$

ByteCompile true

LazyLoad yes

NeedsCompilation no

Author Luca Scrucca [aut, cre] (<<https://orcid.org/0000-0003-3826-0484>>)

Maintainer Luca Scrucca <luca.scrucca@unipg.it>

Date/Publication 2018-03-17 22:43:46 UTC

Repository https://luca-scr.r-universe.dev

RemoteUrl https://github.com/cran/dispmod

RemoteRef HEAD

RemoteSha 99d47a4802671dd46b66546968d2e9bd5985ee4c

Contents

Index [12](#page-11-0)

glm.binomial.disp *Overdispersed binomial logit models*

Description

This function estimates overdispersed binomial logit models using the approach discussed by Williams (1982).

Usage

```
glm.binomial.disp(object, maxit = 30, verbose = TRUE)
```
Arguments

Details

Extra-binomial variation in logistic linear models is discussed, among others, in Collett (1991). Williams (1982) proposed a quasi-likelihood approach for handling overdispersion in logistic regression models.

Suppose we observe the number of successes y_i in m_i trials, for $i = 1, \ldots, n$, such that

$$
y_i | p_i \sim \text{Binomial}(m_i, p_i)
$$

 $p_i \sim \text{Beta}(\gamma, \delta)$

Under this model, each of the *n* binomial observations has a different probability of success p_i , where p_i is a random draw from a Beta distribution. Thus,

$$
E(p_i) = \frac{\gamma}{\gamma + \delta} = \theta
$$

$$
V(p_i) = \phi\theta(1 - \theta)
$$

Assuming $\gamma > 1$ and $\delta > 1$, the Beta density is zero at the extreme values of zero and one, and thus $0 < \phi \leq 1/3$. From this, the unconditional mean and variance can be calculated:

$$
E(y_i) = m_i \theta
$$

$$
V(y_i) = m_i \theta (1 - \theta)(1 + (m_i - 1)\phi)
$$

so unless $m_i = 1$ or $\phi = 0$, the unconditional variance of y_i is larger than binomial variance.

Identical expressions for the mean and variance of y_i can be obtained if we assume that the m_i counts on the i-th unit are dependent, with the same correlation ϕ . In this case, $-1/(m_i - 1)$ $\phi \leq 1$.

The method proposed by Williams uses an iterative algorithm for estimating the dispersion parameter ϕ and hence the necessary weights $1/(1 + \phi(m_i - 1))$ (for details see Williams, 1982).

Value

The function returns an object of class "glm" with the usual information and the added components:

Note

Based on a similar procedure available in Arc (Cook and Weisberg, [http://www.stat.umn.edu/](http://www.stat.umn.edu/arc) [arc](http://www.stat.umn.edu/arc))

References

Collett, D. (1991), *Modelling Binary Data*, London: Chapman and Hall.

Williams, D. A. (1982), Extra-binomial variation in logistic linear models, *Applied Statistics*, 31, 144–148.

See Also

[lm](#page-0-0), [glm](#page-0-0), [lm.disp](#page-6-1), [glm.poisson.disp](#page-2-1)

Examples

```
data(orobanche)
mod <- glm(cbind(germinated, seeds-germinated) ~ host*variety, data = orobanche,
           family = binomial(logit))
summary(mod)
mod.disp <- glm.binomial.disp(mod)
summary(mod.disp)
mod.disp$dispersion
```
glm.poisson.disp *Overdispersed Poisson log-linear models*

Description

This function estimates overdispersed Poisson log-linear models using the approach discussed by Breslow N.E. (1984).

Usage

```
glm.poisson.disp(object, maxit = 30, verbose = TRUE)
```
Arguments

Details

Breslow (1984) proposed an iterative algorithm for fitting overdispersed Poisson log-linear models. The method is similar to that proposed by Williams (1982) for handling overdispersion in logistic regression models (see [glm.binomial.disp](#page-1-1)).

Suppose we observe n independent responses such that

$$
y_i | \lambda_i \sim \text{Poisson}(\lambda_i n_i)
$$

for $i = 1, \ldots, n$. The response variable y_i may be an event counts variable observed over a period of time (or in the space) of length n_i , whereas λ_i is the rate parameter. Then,

$$
E(y_i | \lambda_i) = \mu_i = \lambda_i n_i = \exp(\log(n_i) + \log(\lambda_i))
$$

where $\log(n_i)$ is an offset and $\log(\lambda_i) = \beta' x_i$ expresses the dependence of the Poisson rate parameter on a set of, say p, predictors. If the periods of time are all of the same length, we can set $n_i = 1$ for all i so the offset is zero.

The Poisson distribution has $E(y_i | \lambda_i) = V(y_i | \lambda_i)$, but it may happen that the actual variance exceeds the nominal variance under the assumed probability model.

Suppose that $\theta_i = \lambda_i n_i$ is a random variable distributed according to

$$
\theta_i \sim \text{Gamma}(\mu_i, 1/\phi)
$$

where $E(\theta_i) = \mu_i$ and $V(\theta_i) = \mu_i^2 \phi$. Thus, it can be shown that the unconditional mean and variance of y_i are given by

$$
E(y_i) = \mu_i
$$

and

$$
V(y_i) = \mu_i + \mu_i^2 \phi = \mu_i (1 + \mu_i \phi)
$$

Hence, for $\phi > 0$ we have overdispersion. It is interesting to note that the same mean and variance arise also if we assume a negative binomial distribution for the response variable.

The method proposed by Breslow uses an iterative algorithm for estimating the dispersion parameter ϕ and hence the necessary weights $1/(1 + \mu_i \hat{\phi})$ (for details see Breslow, 1984).

Value

The function returns an object of class "glm" with the usual information and the added components:

Note

Based on a similar procedure available in Arc (Cook and Weisberg, [http://www.stat.umn.edu/](http://www.stat.umn.edu/arc) [arc](http://www.stat.umn.edu/arc))

References

Breslow, N.E. (1984), Extra-Poisson variation in log-linear models, *Applied Statistics*, 33, 38–44.

See Also

[lm](#page-0-0), [glm](#page-0-0), [lm.disp](#page-6-1), [glm.binomial.disp](#page-1-1)

Examples

```
## Salmonella TA98 data
data(salmonellaTA98)
salmonellaTA98 <- within(salmonellaTA98, logx10 <- log(x+10))
mod \le glm(y \sim logx10 + x, data = salmonellaTA98, family = poisson(log))
summary(mod)
mod.disp <- glm.poisson.disp(mod)
summary(mod.disp)
mod.disp$dispersion
# compute predictions on a grid of x-values...
x0 \leq - with(salmonellaTA98, seq(min(x), max(x), length=50))
eta0 <- predict(mod, newdata = data.frame(\log x10 = \log(x0+10), x = x0), se=TRUE)
eta0.disp <- predict(mod.disp, newdata = data.frame(\log x10 = \log(x0+10), x = x0), se=TRUE)
# ... and plot the mean functions with variability bands
plot(y \sim x, data = salmonellaTA98)lines(x0, exp(eta0$fit))
lines(x0, exp(eta0$fit+2*eta0$se), lty=2)
lines(x0, exp(eta0$fit-2*eta0$se), lty=2)
lines(x0, exp(eta0.disp$fit), col=3)
lines(x0, exp(eta0.disp$fit+2*eta0.disp$se), lty=2, col=3)
lines(x0, exp(eta0.disp$fit-2*eta0.disp$se), lty=2, col=3)
## Holford's data
data(holford)
mod \leq glm(incid \sim offset(log(pop)) + Age + Cohort, data = holford,
           family = poisson(log))
summary(mod)
```
6 holford **holford holford holford holford holford h**

```
mod.disp <- glm.poisson.disp(mod)
summary(mod.disp)
mod.disp$dispersion
```
holford *Holford's data on prostatic cancer deaths*

Description

Holford's data on prostatic cancer deaths and mid-period population denominators for non-whites in the US by age and calendar period. Thirteen birth cohorts from 1855-59 through to 1915-19 are represented in at least one of seven 5-year age groups (50-54 through to 80-84) and one of the seven 5-year calendar periods (1935-39 through to 1965-69) for which data are provided.

Usage

data(minitab)

Format

This data frame contains the following columns:

incid number ofd prostatic cancer deaths.

pop mid-period population counts.

Age age groups.

Period calendar periods.

Cohort cohorts.

Source

Holford, T.R. (1983) The estimation of age, period and cohort effects for vital rates. *Biometrics*, 39, 311–324.

References

Breslow, N.E. (1984), Extra-Poisson variation in log-linear models, *Applied Statistics*, 33, 38–44.

Description

This function estimates Gaussian dispersion regression models.

Usage

```
lm.disp(formula, var.formula, data = list(), maxit = 30,
       epsilon = glm.control()$epsilon, subset, na.action = na.omit,
       contrasts = NULL, offset = NULL)
```
Arguments

Details

Gaussian dispersion models allow to model variance heterogeneity in Gaussian regression analysis using a log-linear model for the variance.

Suppose a response y is modelled as a function of a set of p predictors x through the linear model

$$
y_i = \beta' x_i + e_i
$$

where $e_i \sim N(0, \sigma^2)$ under homogeneity. Variance heterogeneity is modelled as

8 lm.disp

$$
V(e_i) = \sigma^2 = \exp(\lambda' z_i)
$$

where z_i may contain some or all the variables in x_i and other variables not included in x_i ; z_i is however assumed to contain a constant term.

The full model can be expressed as

$$
E(y|x) = \beta' x
$$

$$
V(y|x) = \exp(\lambda' z)
$$

and it is fitted by maximum likelihood following the algorithm described in Aitkin (1987).

Value

lm.dispmod() returns an object of class "dispmod".

The summary method can be used to obtain and print a summary of the results.

An object of class "dispmod" is a list containing the following components:

Note

Based on a similar procedure available in Arc (Cook and Weisberg, [http://www.stat.umn.edu/](http://www.stat.umn.edu/arc) [arc](http://www.stat.umn.edu/arc))

References

Aitkin, M. (1987), Modelling variance heterogeneity in normal regression models using GLIM, *Applied Statistics*, 36, 332–339.

See Also

[lm](#page-0-0), [glm](#page-0-0), [glm.binomial.disp](#page-1-1), [glm.poisson.disp](#page-2-1), [ncvTest](#page-0-0).

minitab 9

Examples

```
data(minitab)
minitab <- within(minitab, y <- V^(1/3) )
mod \leq - \ln(y \sim H + D, \text{ data = minital})summary(mod)
mod.disp1 <- lm.disp(y \sim H + D, data = minitab)summary(mod.disp1)
mod.disp2 <- lm.disp(y \sim H + D, \sim H, data = minitab)summary(mod.disp2)
# Likelihood ratio test
deviances <- c(mod.disp1$initial.deviance,
               mod.disp2$deviance,
               mod.disp1$deviance)
lrt <- c(NA, abs(diff(deviances)))
cbind(deviances, lrt, p.value = 1-pchisq(lrt, 1))
# quadratic dispersion model on D (as discussed by Aitkin)
mod.disp4 <- lm.disp(y \sim H + D, \sim D + I(D^2)), data = minitab)
summary(mod.disp4)
r <- mod$residuals
phi.est <- mod.disp4$var$fitted.values
plot(minitab$D, log(r^2))
lines(minitab$D, log(phi.est))
```
minitab *Minitab tree data*

Description

Data on 31 black cherry trees sampled from the Allegheny Natinoal Forest, Pennsylvania.

Usage

data(minitab)

Format

This data frame contains the following columns:

- D diameter 4.5 feet of the ground, inches
- H height of the tree, feet
- V marketable volume of wood, cubic feet

Source

Ryan, T.A., Joiner, B.L. and Ryan, B.F. (1976) *Minitab Student Handbook*. N. Scituate, MA: Duxbury.

References

Cook, R.D. and Weisberg, S. (1982) *Residuals and Influence in Regression*, New York: Chapman and Hall, p. 66.

orobanche *Germination of Orobanche*

Description

Orobanche, commonly known as broomrape, is a genus of parasitic plants with chlorophyll that grow on the roots of flowering plants. Batches of seeds of two varieties of the plant were were brushed onto a plate of diluted extract of bean or cucumber, and the number germinating were recorded.

Usage

data(orobanche)

Format

This data frame contains the following columns:

germinated Number germinated

seeds Number of seeds

slide Slide number

host Host type

variety Variety name

Source

Crowder, M.J. (1978) Beta-binomial anova for proportions. *Applied Statistics*, 27, 34–37.

References

Collett, D. (1991) *Modelling Binary Data*, London: Chapman and Hall, Chapter 6.

Description

Data on Ames Salmonella reverse mutagenicity assay.

Usage

```
data(salmonellaTA98)
```
Format

This data frame contains the following columns:

- x dose levels of quinoline
- y numbers of revertant colonies of TA98 Salmonella observed on each of three replicate plates testes at each of six dose levels of quinolinediameter 4.5 feet of the ground, inches

Source

Margolin, B.J., Kaplan, N. and Zeiger, E. (1981) Statistical analysis of the Ames Salmonella/microsome test, *Proc. Natl. Acad. Sci. USA*, 76, 3779–3783.

References

Breslow, N.E. (1984), Extra-Poisson variation in log-linear models, *Applied Statistics*, 33, 38–44.

Index

```
∗ datasets
    holford, 6
    minitab, 9
    orobanche, 10
    salmonellaTA98, 11
∗ models
    glm.binomial.disp, 2
    glm.poisson.disp, 3
    lm.disp, 7
∗ regression
    glm.binomial.disp, 2
    glm.poisson.disp, 3
    lm.disp, 7
formula, 7
glm, 2–5, 8
glm.binomial.disp, 2, 4, 5, 8
glm.control, 7
glm.poisson.disp, 3, 3, 8
holford, 6
lm, 3, 5, 7, 8
lm.disp, 3, 5, 7
minitab, 9
model.matrix.default, 7
na.omit, 7
ncvTest, 8
orobanche, 10
print.summary.dispmod (lm.disp), 7
salmonellaTA98, 11
```
summary.dispmod *(*lm.disp*)*, [7](#page-6-0)