Package: GA 3.2.5
GA: Genetic Algorithms
Flexible general-purpose toolbox implementing genetic algorithms (GAs) for stochastic optimisation. Binary, real-valued, and permutation representations are available to optimize a fitness function, i.e. a function provided by users depending on their objective function. Several genetic operators are available and can be combined to explore the best settings for the current task. Furthermore, users can define new genetic operators and easily evaluate their performances. Local search using general-purpose optimisation algorithms can be applied stochastically to exploit interesting regions. GAs can be run sequentially or in parallel, using an explicit master-slave parallelisation or a coarse-grain islands approach. For more details see Scrucca (2013) <doi:10.18637/jss.v053.i04> and Scrucca (2017) <doi:10.32614/RJ-2017-008>.
Authors:
GA_3.2.5.tar.gz
GA_3.2.5.zip(r-4.5)GA_3.2.5.zip(r-4.4)GA_3.2.5.zip(r-4.3)
GA_3.2.5.tgz(r-4.4-x86_64)GA_3.2.5.tgz(r-4.4-arm64)GA_3.2.5.tgz(r-4.3-x86_64)GA_3.2.5.tgz(r-4.3-arm64)
GA_3.2.5.tar.gz(r-4.5-noble)GA_3.2.5.tar.gz(r-4.4-noble)
GA_3.2.5.tgz(r-4.4-emscripten)GA_3.2.5.tgz(r-4.3-emscripten)
GA.pdf |GA.html✨
GA/json (API)
NEWS
# Install 'GA' in R: |
install.packages('GA', repos = c('https://luca-scr.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/luca-scr/ga/issues
Last updated 2 months agofrom:175abd1d5f. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 11 2024 |
R-4.5-win-x86_64 | OK | Nov 11 2024 |
R-4.5-linux-x86_64 | OK | Nov 11 2024 |
R-4.4-win-x86_64 | OK | Nov 11 2024 |
R-4.4-mac-x86_64 | OK | Nov 11 2024 |
R-4.4-mac-aarch64 | OK | Nov 11 2024 |
R-4.3-win-x86_64 | OK | Nov 11 2024 |
R-4.3-mac-x86_64 | OK | Nov 11 2024 |
R-4.3-mac-aarch64 | OK | Nov 11 2024 |
Exports:.printShortMatrixbinary2decimalbinary2graybl2gr.colorsdedecimal2binarygaga_lrSelectionga_nlrSelectionga_pmutationga_rwSelectionga_spCrossoverga_tourSelectiongabin_lrSelectiongabin_nlrSelectiongabin_Populationgabin_raMutationgabin_rwSelectiongabin_spCrossovergabin_tourSelectiongabin_uCrossovergaControlgaislgaislMonitorgaMonitorgaperm_cxCrossovergaperm_dmMutationgaperm_ismMutationgaperm_lrSelectiongaperm_nlrSelectiongaperm_oxCrossovergaperm_pbxCrossovergaperm_pmxCrossovergaperm_Populationgaperm_rwSelectiongaperm_scrMutationgaperm_simMutationgaperm_swMutationgaperm_tourSelectiongareal_blxCrossovergareal_degareal_laCrossovergareal_laplaceCrossovergareal_lrSelectiongareal_lsSelectiongareal_nlrSelectiongareal_nraMutationgareal_Populationgareal_powMutationgareal_raMutationgareal_rsMutationgareal_rwSelectiongareal_sigmaSelectiongareal_spCrossovergareal_tourSelectiongareal_waCrossovergarunGAStartupMessagegaSummarygray2binaryjet.colorsoptimProbselpersp3Dplotplot.gaplot.gaislprintprint.summary.deprint.summary.gaprint.summary.gaislreflectSolutionrepairSolutionshowspectral.colorsstartParallelstopParallelsummarysummary.desummary.gasummary.gaisl
Dependencies:clicodetoolscrayonforeachiteratorsRcppRcppArmadillo
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Genetic Algorithms | GA-package GA |
Binary encoding of decimal numbers and vice versa. | binary2decimal decimal2binary |
Gray encoding for binary strings | binary2gray gray2binary |
Differential Evolution via Genetic Algorithms | de print,de-method show,de-method |
Class "de" | de-class |
Genetic Algorithms | ga print,ga-method show,ga-method |
Crossover operators in genetic algorithms | gabin_spCrossover gabin_spCrossover_R gabin_spCrossover_Rcpp gabin_uCrossover gabin_uCrossover_R gabin_uCrossover_Rcpp gaperm_cxCrossover gaperm_cxCrossover_R gaperm_cxCrossover_Rcpp gaperm_oxCrossover gaperm_oxCrossover_R gaperm_oxCrossover_Rcpp gaperm_pbxCrossover gaperm_pbxCrossover_R gaperm_pbxCrossover_Rcpp gaperm_pmxCrossover gaperm_pmxCrossover_R gaperm_pmxCrossover_Rcpp gareal_blxCrossover gareal_blxCrossover_R gareal_blxCrossover_Rcpp gareal_laCrossover gareal_laCrossover_R gareal_laCrossover_Rcpp gareal_laplaceCrossover gareal_laplaceCrossover_R gareal_laplaceCrossover_Rcpp gareal_spCrossover gareal_spCrossover_R gareal_spCrossover_Rcpp gareal_waCrossover gareal_waCrossover_R gareal_waCrossover_Rcpp ga_Crossover ga_Crossover_R ga_Crossover_Rcpp ga_spCrossover ga_spCrossover_R ga_spCrossover_Rcpp |
Mutation operators in genetic algorithms | gabin_raMutation gabin_raMutation_R gabin_raMutation_Rcpp gaperm_dmMutation gaperm_dmMutation_R gaperm_dmMutation_Rcpp gaperm_ismMutation gaperm_ismMutation_R gaperm_ismMutation_Rcpp gaperm_scrMutation gaperm_scrMutation_R gaperm_scrMutation_Rcpp gaperm_simMutation gaperm_simMutation_R gaperm_simMutation_Rcpp gaperm_swMutation gaperm_swMutation_R gaperm_swMutation_Rcpp gareal_nraMutation gareal_nraMutation_R gareal_nraMutation_Rcpp gareal_powMutation gareal_powMutation_R gareal_powMutation_Rcpp gareal_raMutation gareal_raMutation_R gareal_raMutation_Rcpp gareal_rsMutation gareal_rsMutation_R gareal_rsMutation_Rcpp ga_Mutation |
Variable mutation probability in genetic algorithms | ga_pmutation ga_pmutation_R ga_pmutation_Rcpp |
Population initialization in genetic algorithms | gabin_Population gabin_Population_R gabin_Population_Rcpp gaperm_Population gaperm_Population_R gaperm_Population_Rcpp gareal_Population gareal_Population_R gareal_Population_Rcpp ga_Population |
Selection operators in genetic algorithms | gabin_lrSelection gabin_lrSelection_R gabin_lrSelection_Rcpp gabin_nlrSelection gabin_nlrSelection_R gabin_nlrSelection_Rcpp gabin_rwSelection gabin_rwSelection_R gabin_rwSelection_Rcpp gabin_tourSelection gabin_tourSelection_R gabin_tourSelection_Rcpp gaperm_lrSelection gaperm_lrSelection_R gaperm_lrSelection_Rcpp gaperm_nlrSelection gaperm_nlrSelection_R gaperm_nlrSelection_Rcpp gaperm_rwSelection gaperm_rwSelection_R gaperm_rwSelection_Rcpp gaperm_tourSelection gaperm_tourSelection_R gaperm_tourSelection_Rcpp gareal_de gareal_de_R gareal_de_Rcpp gareal_lrSelection gareal_lrSelection_R gareal_lrSelection_Rcpp gareal_lsSelection gareal_lsSelection_R gareal_lsSelection_Rcpp gareal_nlrSelection gareal_nlrSelection_R gareal_nlrSelection_Rcpp gareal_rwSelection gareal_rwSelection_R gareal_rwSelection_Rcpp gareal_sigmaSelection gareal_sigmaSelection_R gareal_sigmaSelection_Rcpp gareal_tourSelection gareal_tourSelection_R gareal_tourSelection_Rcpp ga_lrSelection ga_lrSelection_R ga_lrSelection_Rcpp ga_nlrSelection ga_nlrSelection_R ga_nlrSelection_Rcpp ga_rwSelection ga_rwSelection_R ga_rwSelection_Rcpp ga_Selection ga_tourSelection ga_tourSelection_R ga_tourSelection_Rcpp |
Class "ga" | ga-class |
A function for setting or retrieving defaults genetic operators | gaControl |
Islands Genetic Algorithms | gaisl print,gaisl-method show,gaisl-method |
Class "gaisl" | gaisl-class |
Monitor genetic algorithm evolution | gaislMonitor gaMonitor |
Summarize genetic algorithm evolution | gaSummary |
Virtual Class "numericOrNA" - Simple Class for sub-assignment Values | numericOrNA-class |
Colours palettes | bl2gr.colors jet.colors spectral.colors |
Parameters or decision variables names from an object of class 'ga-class'. | parNames parNames,ga-method |
Perspective plot with colour levels | persp3D |
Plot of Differential Evolution search path | plot,de-method |
Plot of Genetic Algorithm search path | plot,ga-method plot.ga |
Plot of Islands Genetic Algorithm search path | plot,gaisl-method plot.gaisl |
Summary for Differential Evolution | print.summary.de summary,de-method summary.de |
Summary for Genetic Algorithms | print.summary.ga summary,ga-method summary.ga |
Summary for Islands Genetic Algorithms | print.summary.gaisl summary,gaisl-method summary.gaisl |