Package: GA 3.2.5

GA: Genetic Algorithms

Flexible general-purpose toolbox implementing genetic algorithms (GAs) for stochastic optimisation. Binary, real-valued, and permutation representations are available to optimize a fitness function, i.e. a function provided by users depending on their objective function. Several genetic operators are available and can be combined to explore the best settings for the current task. Furthermore, users can define new genetic operators and easily evaluate their performances. Local search using general-purpose optimisation algorithms can be applied stochastically to exploit interesting regions. GAs can be run sequentially or in parallel, using an explicit master-slave parallelisation or a coarse-grain islands approach. For more details see Scrucca (2013) <doi:10.18637/jss.v053.i04> and Scrucca (2017) <doi:10.32614/RJ-2017-008>.

Authors:Luca Scrucca [aut, cre]

GA_3.2.5.tar.gz
GA_3.2.5.zip(r-4.5)GA_3.2.5.zip(r-4.4)GA_3.2.5.zip(r-4.3)
GA_3.2.5.tgz(r-4.4-x86_64)GA_3.2.5.tgz(r-4.4-arm64)GA_3.2.5.tgz(r-4.3-x86_64)GA_3.2.5.tgz(r-4.3-arm64)
GA_3.2.5.tar.gz(r-4.5-noble)GA_3.2.5.tar.gz(r-4.4-noble)
GA_3.2.5.tgz(r-4.4-emscripten)GA_3.2.5.tgz(r-4.3-emscripten)
GA.pdf |GA.html
GA/json (API)
NEWS

# Install 'GA' in R:
install.packages('GA', repos = c('https://luca-scr.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/luca-scr/ga/issues

Uses libs:
  • c++– GNU Standard C++ Library v3

On CRAN:

genetic-algorithmoptimisation

11.77 score 91 stars 51 packages 580 scripts 7.3k downloads 1.1k mentions 80 exports 7 dependencies

Last updated 2 months agofrom:175abd1d5f. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 11 2024
R-4.5-win-x86_64OKNov 11 2024
R-4.5-linux-x86_64OKNov 11 2024
R-4.4-win-x86_64OKNov 11 2024
R-4.4-mac-x86_64OKNov 11 2024
R-4.4-mac-aarch64OKNov 11 2024
R-4.3-win-x86_64OKNov 11 2024
R-4.3-mac-x86_64OKNov 11 2024
R-4.3-mac-aarch64OKNov 11 2024

Exports:.printShortMatrixbinary2decimalbinary2graybl2gr.colorsdedecimal2binarygaga_lrSelectionga_nlrSelectionga_pmutationga_rwSelectionga_spCrossoverga_tourSelectiongabin_lrSelectiongabin_nlrSelectiongabin_Populationgabin_raMutationgabin_rwSelectiongabin_spCrossovergabin_tourSelectiongabin_uCrossovergaControlgaislgaislMonitorgaMonitorgaperm_cxCrossovergaperm_dmMutationgaperm_ismMutationgaperm_lrSelectiongaperm_nlrSelectiongaperm_oxCrossovergaperm_pbxCrossovergaperm_pmxCrossovergaperm_Populationgaperm_rwSelectiongaperm_scrMutationgaperm_simMutationgaperm_swMutationgaperm_tourSelectiongareal_blxCrossovergareal_degareal_laCrossovergareal_laplaceCrossovergareal_lrSelectiongareal_lsSelectiongareal_nlrSelectiongareal_nraMutationgareal_Populationgareal_powMutationgareal_raMutationgareal_rsMutationgareal_rwSelectiongareal_sigmaSelectiongareal_spCrossovergareal_tourSelectiongareal_waCrossovergarunGAStartupMessagegaSummarygray2binaryjet.colorsoptimProbselpersp3Dplotplot.gaplot.gaislprintprint.summary.deprint.summary.gaprint.summary.gaislreflectSolutionrepairSolutionshowspectral.colorsstartParallelstopParallelsummarysummary.desummary.gasummary.gaisl

Dependencies:clicodetoolscrayonforeachiteratorsRcppRcppArmadillo

A quick tour of GA

Rendered fromGA.Rmdusingknitr::rmarkdownon Nov 11 2024.

Last update: 2024-09-12
Started: 2016-05-06

Readme and manuals

Help Manual

Help pageTopics
Genetic AlgorithmsGA-package GA
Binary encoding of decimal numbers and vice versa.binary2decimal decimal2binary
Gray encoding for binary stringsbinary2gray gray2binary
Differential Evolution via Genetic Algorithmsde print,de-method show,de-method
Class "de"de-class
Genetic Algorithmsga print,ga-method show,ga-method
Crossover operators in genetic algorithmsgabin_spCrossover gabin_spCrossover_R gabin_spCrossover_Rcpp gabin_uCrossover gabin_uCrossover_R gabin_uCrossover_Rcpp gaperm_cxCrossover gaperm_cxCrossover_R gaperm_cxCrossover_Rcpp gaperm_oxCrossover gaperm_oxCrossover_R gaperm_oxCrossover_Rcpp gaperm_pbxCrossover gaperm_pbxCrossover_R gaperm_pbxCrossover_Rcpp gaperm_pmxCrossover gaperm_pmxCrossover_R gaperm_pmxCrossover_Rcpp gareal_blxCrossover gareal_blxCrossover_R gareal_blxCrossover_Rcpp gareal_laCrossover gareal_laCrossover_R gareal_laCrossover_Rcpp gareal_laplaceCrossover gareal_laplaceCrossover_R gareal_laplaceCrossover_Rcpp gareal_spCrossover gareal_spCrossover_R gareal_spCrossover_Rcpp gareal_waCrossover gareal_waCrossover_R gareal_waCrossover_Rcpp ga_Crossover ga_Crossover_R ga_Crossover_Rcpp ga_spCrossover ga_spCrossover_R ga_spCrossover_Rcpp
Mutation operators in genetic algorithmsgabin_raMutation gabin_raMutation_R gabin_raMutation_Rcpp gaperm_dmMutation gaperm_dmMutation_R gaperm_dmMutation_Rcpp gaperm_ismMutation gaperm_ismMutation_R gaperm_ismMutation_Rcpp gaperm_scrMutation gaperm_scrMutation_R gaperm_scrMutation_Rcpp gaperm_simMutation gaperm_simMutation_R gaperm_simMutation_Rcpp gaperm_swMutation gaperm_swMutation_R gaperm_swMutation_Rcpp gareal_nraMutation gareal_nraMutation_R gareal_nraMutation_Rcpp gareal_powMutation gareal_powMutation_R gareal_powMutation_Rcpp gareal_raMutation gareal_raMutation_R gareal_raMutation_Rcpp gareal_rsMutation gareal_rsMutation_R gareal_rsMutation_Rcpp ga_Mutation
Variable mutation probability in genetic algorithmsga_pmutation ga_pmutation_R ga_pmutation_Rcpp
Population initialization in genetic algorithmsgabin_Population gabin_Population_R gabin_Population_Rcpp gaperm_Population gaperm_Population_R gaperm_Population_Rcpp gareal_Population gareal_Population_R gareal_Population_Rcpp ga_Population
Selection operators in genetic algorithmsgabin_lrSelection gabin_lrSelection_R gabin_lrSelection_Rcpp gabin_nlrSelection gabin_nlrSelection_R gabin_nlrSelection_Rcpp gabin_rwSelection gabin_rwSelection_R gabin_rwSelection_Rcpp gabin_tourSelection gabin_tourSelection_R gabin_tourSelection_Rcpp gaperm_lrSelection gaperm_lrSelection_R gaperm_lrSelection_Rcpp gaperm_nlrSelection gaperm_nlrSelection_R gaperm_nlrSelection_Rcpp gaperm_rwSelection gaperm_rwSelection_R gaperm_rwSelection_Rcpp gaperm_tourSelection gaperm_tourSelection_R gaperm_tourSelection_Rcpp gareal_de gareal_de_R gareal_de_Rcpp gareal_lrSelection gareal_lrSelection_R gareal_lrSelection_Rcpp gareal_lsSelection gareal_lsSelection_R gareal_lsSelection_Rcpp gareal_nlrSelection gareal_nlrSelection_R gareal_nlrSelection_Rcpp gareal_rwSelection gareal_rwSelection_R gareal_rwSelection_Rcpp gareal_sigmaSelection gareal_sigmaSelection_R gareal_sigmaSelection_Rcpp gareal_tourSelection gareal_tourSelection_R gareal_tourSelection_Rcpp ga_lrSelection ga_lrSelection_R ga_lrSelection_Rcpp ga_nlrSelection ga_nlrSelection_R ga_nlrSelection_Rcpp ga_rwSelection ga_rwSelection_R ga_rwSelection_Rcpp ga_Selection ga_tourSelection ga_tourSelection_R ga_tourSelection_Rcpp
Class "ga"ga-class
A function for setting or retrieving defaults genetic operatorsgaControl
Islands Genetic Algorithmsgaisl print,gaisl-method show,gaisl-method
Class "gaisl"gaisl-class
Monitor genetic algorithm evolutiongaislMonitor gaMonitor
Summarize genetic algorithm evolutiongaSummary
Virtual Class "numericOrNA" - Simple Class for sub-assignment ValuesnumericOrNA-class
Colours palettesbl2gr.colors jet.colors spectral.colors
Parameters or decision variables names from an object of class 'ga-class'.parNames parNames,ga-method
Perspective plot with colour levelspersp3D
Plot of Differential Evolution search pathplot,de-method
Plot of Genetic Algorithm search pathplot,ga-method plot.ga
Plot of Islands Genetic Algorithm search pathplot,gaisl-method plot.gaisl
Summary for Differential Evolutionprint.summary.de summary,de-method summary.de
Summary for Genetic Algorithmsprint.summary.ga summary,ga-method summary.ga
Summary for Islands Genetic Algorithmsprint.summary.gaisl summary,gaisl-method summary.gaisl